Probability-one Homotopy Maps for Constrained Clustering Problems

نویسندگان

  • David R. Easterling
  • Layne T. Watson
  • Naren Ramakrishnan
  • M. Shahriar Hossain
چکیده

Many algorithms for constrained clustering have been developed in the literature that aim to balance vector quantization requirements of cluster prototypes against the discrete satisfaction requirements of constraint (must-link or cannot-link) sets. A significant amount of research has been devoted to designing new algorithms for constrained clustering and understanding when constraints help clustering. However, no method exists to systematically characterize solution sets as constraints are gently introduced and how to assist practitioners in choosing a sweet spot between vector quantization and constraint satisfaction. A homotopy method is presented that can smoothly track solutions from unconstrained to constrained formulations of clustering. Beginning the homotopy zero curve tracking where the solution is (fairly) well-understood, the curve can then be tracked into regions where there is only a qualitative understanding of the solution set, finding multiple local solutions along the way. Experiments demonstrate how the new homotopy method helps identify better tradeoffs and reveals insight into the structure of solution sets not obtainable using pointwise exploration of parameters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probability-one homotopy maps for tracking constrained clustering solutions

Modern machine learning problems typically have multiple criteria, but there is currently no systematic mathematical theory to guide the design of formulations and exploration of alternatives. Homotopy methods are a promising approach to characterize solution spaces by smoothly tracking solutions from one formulation (typically an “easy” problem) to another (typically a “hard” problem). New res...

متن کامل

Theory of Globally Convergent Probability-One Homotopies for Nonlinear Programming

For many years globally convergent probability-one homotopy methods have been remarkably successful on difficult realistic engineering optimization problems, most of which were attacked by homotopy methods because other optimization algorithms failed or were ineffective. Convergence theory has been derived for a few particular problems, and considerable fixed point theory exists, but generally ...

متن کامل

Studying Constrained Clustering Problems Using Homotopy Maps

Many algorithms for constrained clustering have been developed in the literature that aim to balance vector quantization requirements of cluster prototypes against the discrete satisfaction requirements of constraint (must-link or must-not-link) sets. Significant research has been devoted to designing new algorithms for constrained clustering and understanding when constraints help clustering. ...

متن کامل

Probability-one homotopy maps for mixed complementarity problems

Probability-one homotopy algorithms have strong convergence characteristics under mild assumptions. Such algorithms for mixed complementarity problems (MCPs) have potentially wide impact because MCPs are pervasive in science and engineering. A probability-one homotopy algorithm for MCPs was developed earlier by Billups and Watson based on the default homotopy mapping. This algorithm had guarant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013